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Abstract

If the dispersion in a nonlinear hyperbolic wave equation is weak in the sense that the frequency xðkÞ of cosðkxÞ is
bounded as k ! 1, it is common that (i) travelling waves exist up to a limiting amplitude with wave-breaking for

higher amplitudes, and (ii) the limiting wave has a corner, that is, a discontinuity in slope. Because ‘‘corner’’ waves are

not smooth, standard numerical methods converge poorly as the number of grid points is increased. However, the

corner wave is important because, at least in some systems, it is the attractor for all large amplitude initial conditions.

Here we devise a Legendre-pseudospectral method which is uncorrupted by the singularity. The symmetric

(uðX Þ ¼ uð�X Þ) wave can be computed on an interval spanning only half the spatial period; since u is smooth on this

domain which does not include the corner except as an endpoint, all numerical difficulties are avoided. A key step is to

derive an extra boundary condition which uniquely identifies the corner wave. With both the grid point values of uðxÞ
and phase speed c as unknowns, the discretized equations, imposing three boundary conditions on a second order

differential equation, are solved by a Newton–Raphson iteration. Although our method is illustrated by the so-called

‘‘Whitham�s equation’’, ut þ uux ¼
R
Du dx0 where D is a very general linear operator, the ideas are widely applicable.
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1. Introduction

In a study of equatorially trapped Kelvin waves [13], we found that travelling waves, as predicted by

the Korteweg-deVries equation-based theory of [3], did indeed occur provided the initial amplitude was
* Tel.: +1-734-764-3338; fax: +1-734-764-5137.

E-mail address: jpboyd@umich.edu.

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00203-1

mail to: jpboyd@umich.edu


J.P. Boyd / Journal of Computational Physics 189 (2003) 98–110 99
sufficiently small. However, in contradiction to Korteweg-deVries theory, which allows solitary and cnoidal

waves of arbitrarily large amplitude, sufficiently tall Kelvin waves invariably steepen and break. Fig. 10 of

[13] charts the boundary between non-breaking and breaking behavior for an initially sinusoidal distur-

bance of various amplitudes and wavelengths. Later work (to be published) has shown that the largest

amplitude Kelvin travelling wave seems to have a slope discontinuity at the crest, that is, the shape of the

wave has a corner.

Pullin�s review [21] notes on page 109 that ‘‘solution branches for many families of vortex equilibria

terminate where the conotur shape forms a 90� corner,. . ., examples being V-states with mP 3 and waves of
finite amplitude on wall-bounded vortex layers [9]’’. A similar pattern of small amplitude, spatially periodic

travelling waves, a limiting wave of discontinuous slope, and breaking for larger amplitude is found in

ordinary non-rotating surface water waves. Sir George Stokes in 1847 showed that the sides of the crest of

the limiting wave met at an angle of 120� (see [27, Appendix B]). With this century-old exemplar, one might

imagine that the theory of weakly dispersive waves that exhibit similar break-at-large/smooth-at-small/

corner wave limit behavior would be thoroughly developed.

Instead, as noted by Shefter and Rosales [26], it is only in the last five years that there has been much

interest in corner waves, despite some pioneering efforts reviewed in [20,31], and vast numbers of questions
are unresolved. In this note, we shall focus on a generalization of the one-dimensional advection equation

and the Korteweg-deVries equation, dubbed ‘‘Whitham�s equation’’ in [15]

ðut þ uuxÞx ¼ Du ½Whitham’s Equation Family
; ð1Þ

where the subscripts denote differentiation with respect to the subscripted coordinate and where D is a

linear operator that we will dub the ‘‘dispersion operator’’ since this term is solely responsible for wave

dispersion. Although we shall pursue this generalized wave equation family strictly as a mathematical

model, it is not in any sense a made-up problem (although its original invention by Whitham [30,31] was
rather heuristic). Rather, it falls naturally out of singular perturbation theory for a wide variety of problems

in fluid mechanics and other branches of science and engineering with various D arising in different pa-

rameter ranges. Important special cases that have been previously studied include the following:

1. Du ¼ uxxxx, Korteweg-deVries equation [3,6,31];

2. Du ¼ u6x, Fifth-Order Korteweg-deVries equation [4];

3. Du ¼ u, Ostrovsky–Hunter equation [16,17];

4. Du ¼
R 2p
0

cosðx� yÞuðyÞ dy, Gabov–Shefter–Rosales equation [15,26];

5.

Du ¼ pb2 u
�

�
Z 2p

0

b coshðbfjX � yj � pgÞ
2 sinhðpbÞ uðyÞ dy

�
;

Whitham–Zaitsev kernel [20,25,30–32]

Many other cases are discussed in Whitham�s book [31] and especially in the monograph by Naumkin and
Shishmarev [20]. The operator can be generalized to include dissipative terms [18,20], but we shall restrict D
to be purely dispersive.

Fig. 1 shows the travelling waves and the limiting corner wave for a typical case, the Ostrovsky–Hunter

equation. Fig. 2 compares the corner waves for several representative cases.

We shall further restrict our goals to that of devising a numerical method to compute corner waves

directly, employing only ideas that can be generalized to more complicated wave equations. These corner

waves are more important than merely a limit of the travelling waves. For the wave equations studied by

Shefter and Rosales [26] and Madja et al. [19], large amplitude initial conditions break and dissipate, but
the waves do not decay to zero, but rather evolve to the corner wave. In other words, when small dissipative

terms are added (to avoid numerical disaster at the shocks and also because all real fluids are viscous), the

corner wave is an attractor.



Fig. 2. A comparison of four typical corner waves: Ostrovsky–Hunter equation (thick solid), the Gabov–Shefter–Rosales equation

with a cosine kernel (circles), and the Whitham–Zaitsev kernel for two different values of the parameter b which appears in the def-

inition of this kernel. The amplitudes have all been scaled to a maximum of one to facilitate comparisons; in particular, the profiles of

the Ostrovsky–Hunter and Gabov–Shefter–Rosales corner waves closely resemble the Whitham–Zaitsev corner wave for b ¼ 1=2. In

the limit b! 1, Zaitsev�s periodic corner waves become the solitary waves analyzed by Whitham, Seliger and Gabov.

Fig. 1. Travelling waves and the corner wave for a typical weakly dispersive equation, Ostrovsky–Hunter equation. There are no

travelling waves whose amplitudes are larger than that of the slope-discontinuous corner wave. The small amplitude travelling waves

are closely approximated by a constant times cosðX Þ.
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There are no rigorous theorems that separate classes of dispersion operator that generate travelling

waves of arbitrary amplitude from classes which ‘‘max out’’ with a corner wave. However, experience with

the special cases enumerated above and others not listed suggests that, in Whitham�s equation family and in

other wave equations, corner waves arise only when the dispersion is weak in the following sense.

Definition 1.1 (Weak dispersion). The dispersion operator D is said to generate weak dispersion if

lim D cosðkxÞ < 1: ð2Þ

k!1
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In what follows, we shall restrict attention to operators that are ‘‘weakly dispersive’’ in this sense. For

steadily translating waves, which by definition are functions only of

X � x� ct: ð3Þ

Whitham�s equation family reduces to

ðu� cÞuXX þ ðuX Þ2 ¼ Du ð4Þ

which is the problem we shall attack in the rest of the article. By rescaling the spatial coordinate, one can

always choose the period to be 2p without loss of generality, and we shall do this.

In the next section, we shall review some needed theoretical background, and then derive the three

boundary conditions that we will impose on (4) to simultaneously determine the unique uðX ; cÞ and c so
that the wave is a corner wave.

Section 3 describes our Legendre-pseudospectral numerical method with Newton–Raphson iteration and

continuation. The following section describes a numerical example. Next, we collect the three cases where

the corner waves have been found in explicit analytic form by previous studies, and furnish the travelling
‘‘coshoidal’’ waves. The final section discusses the many open problems.
2. Background theory and derivation of boundary/matching conditions

The dispersion operator can always be represented in the form of a convolution operator

Du ¼ 1

p

Z 2p

0

KðX � yÞuðyÞ dy: ð5Þ

The kernel is not necessarily a smooth function; KðX Þ must be the derivative of a delta-function in order to

yield derivative operators as needed for the Korteweg-deVries equation.

We shall assume the following:

1. uðX Þ and the kernel K are spatially periodic;

2. the spatial period is 2p;
3. the corner is located at X ¼ 0;
4. uðX Þ and the kernel KðX Þ are symmetric with respect to X , that is,

uðX Þ ¼ uð�X Þ ð6Þ

and similarly for the kernel.

By rescaling the spatial coordinate, we can always convert a general period P into a period of 2p, so no

generality is lost by our second assumption.

Whitham�s equation family has coefficients which are independent of x, and therefore the solutions are

always translationally invariant in the sense that if uðx; tÞ is a solution, then so is uðxþ /; tÞ where / is an

arbitrary constant. For the corner waves, this implies that no generality is lost by assuming that the wave
has been translated so that the slope discontinuity is always at X ¼ 0 (third assumption).

Unfortunately, there is no rigorous proof that the corner waves must be symmetric with respect to their

crest or trough. However, all known examples are symmetric. We shall therefore assume that the corner

waves are symmetric with respect to X ¼ 0.

It is helpful to prove the following:

Theorem 2.1 (Boundedness of Du for weak dispersion). ‘‘Weak’’ dispersion, as defined above, is equivalent
to the boundedness of Du even at a point where uðX Þ has a discontinuous first derivative.
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Proof. Because of their symmetry and periodicity, both KðX Þ and uðX Þ can be expanded as cosine series:

KðX Þ �
X1
n¼0

Kn cosðnX Þ; uðX Þ �
X1
m¼0

am cosðmX Þ: ð7Þ

From the definition of the dispersion operator plus the identity cosðn½X � y
Þ ¼ cosðnX Þ cosðnyÞþ
sinðnX Þ sinðnyÞ and the orthogonality of the trigonometric functions, we obtain

Du ¼ 1

p

X1
n¼0

X1
m¼0

Knam

Z 2p

0

cosðn½X � y
Þ cosðmyÞ dy; ð8Þ

¼ 1

p

X1
n¼0

X1
m¼0

Knam cosðnX Þ
Z 2p

0

cosðnyÞ cosðmyÞ dy
�

þ sinðnX Þ
Z 2p

0

sinðnyÞ cosðmyÞ dy
�

¼ 2K0a0 þ
X1
n¼1

Knan: ð9Þ

Our definition of weak dispersion is that D cosðnX Þ is finite as n! 1, which clearly implies that jKnj is
bounded by a constant j > 0. If the series for uðX Þ is convergent, then so also will be the series for Du,
implying that Du is finite for all real X including at the point of discontinuous slope. (Note that the Fourier

cosine coefficients of a function with a slope discontinuity are proportional to 1=n2 as n! 1.) �

The first boundary condition on uðX Þ comes from the following:

Theorem 2.2. If D is a ‘‘weak’’ dispersion operator, then for corner waves at the corner X ¼ 0 where the first
derivative of u has a jump discontinuity and the second derivative is a delta-function

uð0Þ ¼ c: ð10Þ
Proof. Du is bounded and smooth at the corner as shown by Theorem 2.1. In the theory of distributions, a

jump discontinuity is proportional to the step function, and the derivative of the step function is the Dirac
delta-function. Thus, the corner is a point where uXX is proportional to dðX Þ. It follows that the left-hand

side of Whitham�s equation family cannot be smooth, matching the smoothness of the right-hand side and

allowing the differential equation to be satisfied, unless ðu� cÞ ¼ 0 at the corner so as to multiply by zero

the delta-function in uXX . �

Theorem 2.3 (Dispersion operator has zero mean). In order that the differential equation can be satisfied, it
is necessary that

Z 2p

0

DuðX Þ dx ¼ 0 ð11Þ

whether uðX Þ is a corner wave or a smooth travelling wave of period 2p.

Proof. The differential equation is

ðu� cÞuXX þ ðuX Þ2 ¼ Du: ð12Þ

However, the left-hand side is a perfect derivative so that the differential equation can be rewritten as

fðu� cÞuXgX ¼ Du: ð13Þ
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Integrating both sides gives

fðuð2pÞ � cÞuX ð2pÞg � fðuð0Þ � cÞuX ð0Þg ¼
Z 2p

0

DuðX Þ dX : ð14Þ

If we invoke the previous theorem that uð0Þ ¼ c, and by periodicity, uð2pÞ ¼ c also, and also note that uX is

bounded at the corners, then the terms on the left-hand side of the integrated equation are zero. Therefore,

the integral of Du must be zero also. If the wave does not have corners, then we can simply invoke spatial
periodicity with period 2p to show that the terms on the left of the integrated equation, although not

necessarily zero, must cancel.

Theorem 2.4 (Zero mean of solution). If uðX ; c ¼ c0Þ is a solution to the generalized travelling wave equation
and the kernel has zero mean, that is,

K0 �
Z 2p

0

KðX Þ dX ¼ 0; ð15Þ

then l þ uðX ; c0Þ is a solution with c ¼ c0 þ l. In this case, there is no loss of generality in assuming the zero
mean condition

a0 �
Z 2p

0

uðX Þ dX ¼ 0 ½Zero Mean Condition
: ð16Þ

If K0 6¼ 0, then the travelling must have zero mean.

Proof. For the first proposition where K0 ¼ 0, note that if we simultaneously replace u by uþ k and c by
cþ k, the left-hand side of the wave equation, ðu� cÞuXX þ ðuX Þ2, is unaltered. The right-hand side is

changed by 2kK0, which is zero whenever the kernel has zero mean. To prove the second proposition,

observe that (8) shows that the mean of Du is twice the product of the mean of K times the mean of u.
However, an earlier theorem shows that the mean of D is zero. It follows that if K0 6¼ 0, then the mean of u
must be zero. �

This theorem implies that we can restrict attention to solutions with zero mean without loss of gener-

ality, and we shall therefore assume (16) in the rest of the article.

The boundary condition that uX ðpÞ ¼ 0 is a consequence of the following.

Theorem 2.5 (Double parity of periodic functions). If uðX Þ is a function of definite parity with respect to the
origin and period 2p, then it is of the same parity with respect to the ‘‘half-period points’’, X ¼ �p, also.

Proof. A periodic, symmetric function may be expanded as a Fourier cosine series. By using the trigono-

metric identity, cosðn½X þ p
Þ ¼ ð�1Þn cosðnX Þ, it follows that the function can be expanded as a series of

cosines in the shifted coordinate Y ¼ X � p also. This implies that uðX Þ must be symmetric about X ¼ p.
The same is true for antisymmetric functions, which may be expanded as sine series about both X ¼ 0 and

X ¼ p. �

If uðX Þ is smooth about a point of symmetry, then uX is zero at this point. This follows from the usual

centered definition of a derivative: uX ¼ limh!0ðuðX þ hÞ � uðX � hÞÞ=ð2hÞ, but uðhÞ ¼ uð�hÞ for a sym-
metric function for all h.

The symmetry is not merely important for deriving a boundary condition, however. Because of the

symmetry, it is sufficient to numerically solve the integro-differential equation on the interval X 2 ½0; p
 even
though the spatial period is twice as large. This greatly reduces the computational expense.
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The final boundary condition can be derived by taking the limit of the terms in the differential equation as

X ! 0þ. The dispersive term Du does not blow up even at the corner – this is the meaning of ‘‘weak’’ dis-

persion according to Theorem 2.1 – and tends smoothly to its limit as X ! 0. The theorem uð0Þ ¼ c implies

that the ðu� cÞuXX is approximately zero for very small but non-zeroX . The differential equation in the limit is

ðuX ð0ÞÞ2 ¼ Duð0Þ: � ð17Þ

The same limit may also be derived [8] using matched asymptotic expansions [1,2,23,28].
3. Numerical implementation

The numerical problem is to solve

ðu� cÞuX þ ðuX Þ2 ¼ Du; X 2 ½0; p
 ð18Þ

with c as an unknown as well as u, subject to the three boundary conditions:

uX ðpÞ ¼ 0; uð0Þ ¼ c; ðuX ð0ÞÞ2 ¼ Duð0Þ: ð19Þ

Because we assume that the corner wave is symmetric with respect to X ¼ 0, it is sufficient to restrict the

numerical domain to half the spatial period. Because uðX Þ is completely smooth on the half-domain, it has

a rapidly convergent series as a Legendre polynomial series.

We chose a pseudospectral method because it combines high accuracy with simplicity of programming.

Pseudospectral algorithms in general are described at length in the monographs [7,12] and the review [22].

One minor technical complication is that the canonical interval for Legendre expansions is z 2 ½�1; 1
. It
is therefore convenient to make the change of variable

z ¼ �1þ 2

p
X $ X ¼ p

2
ðzþ 1Þ ! d

dX
¼ 2

p
d

dz
; dX ¼ p

2
dz: ð20Þ

The problem becomes

ðu� cÞuzz þ ðuzÞ2 ¼
p2

4
Du; z 2 ½�1; 1
: ð21Þ

The first two boundary conditions are essentially unaltered, i.e., uzð1Þ ¼ 0, uðz ¼ �1Þ ¼ c while the third
boundary condition is modified to ½uzðz ¼ �1Þ
2 ¼ ðp2=4ÞDuðz ¼ �1Þ. Because of the symmetry of uðX Þ
with respect to X ¼ p, the convolution integral (5) can be written as

Du ¼ 1

2

Z 1

�1

K
p
2
ðz

�n
� wÞ

�
þ K

p
2
ðz

�
þ w� 2Þ

�o
u

p
2
ðw

�
þ 1Þ

�
dw: ð22Þ

When the operator Du is thus represented as an integral, a basis of Legendre polynomials is convenient;

the collocation points associated with these functions are also the abcissas for a Gauss–Lobatto quadrature.

The collocation/quadrature points zi are the N roots of ð1� z2ÞPN�1;zðzÞ, where PN�1;z denotes the first

derivative of the Legendre polynomial of degree N � 1. The Legendre–Lobatto points for up to nine-point

grids are given analytically on pages 572–574 of [7]. For arbitrary N , one can use the Fortran software given

in Appendix C of [12] or the Matlab codes of [29].

Instead of using the Legendre polynomials themselves as the basis set (‘‘modal basis’’), it is convenient to
rearrange the first N polynomials into polynomials Cj of degree N which have the property of being one at
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zj and zero at all the other collocation points. The elements of this ‘‘nodal’’ or ‘‘Lagrange’’ or ‘‘cardinal’’

basis are

CjðzÞ � � 1� z2
NðN � 1ÞPN�1ðzjÞðz� zjÞ

dPN�1ðzÞ
dz

; CjðziÞ ¼
1; i ¼ j
0; i 6¼ j:

�
ð23Þ

The associated quadrature weights are

wj ¼ 2 NðN
�.

� 1ÞfPN�1ðzjÞg2
�

ð24Þ

and the Legendre polynomials can be evaluated by the three-term recurrence P0 ¼ 1; P1 ¼ z;
ðnþ 1ÞPnþ1ðzÞ ¼ ð2nþ 1ÞzPn � nPn�1.

The matrix of grid point values of the first derivative of the cardinal functions is given by

dCj
dz

ðziÞ � dð1Þ
ij ¼

�ð1=4ÞNðN � 1Þ; i ¼ j ¼ 0;
ð1=4ÞNðN � 1Þ; i ¼ j ¼ N � 1;
0; i ¼ j and 0 < j < N � 1;
PN�1ðziÞ=½PN�1ðzjÞðzi � zjÞ
; i 6¼ j:

8>><
>>:

ð25Þ

The matrix of second derivatives,
~~dd~dd
ð2Þ
, is just the product of the first derivative matrix with

itself.
We then write

uðzÞ ¼
XN�1

j¼0

ujCjðzÞ; ð26Þ

where the coefficients of the nodal series, uj, are also the values of the approximation at the collocation

points. It then follows that uzðziÞ ¼
PN�1

j¼0 dð1Þ
ij uj and similarly for higher derivatives. The convolution op-

erator is discretized by Gaussian quadrature as

DuðziÞ ¼
1

2

XN�1

j¼0

K
p
2
ðzi

�n
� zjÞ

�
þ K

p
2
ðzi

�
þ zj � 2Þ

�o
wjuj ¼

XN�1

j¼0

Kijuj: ð27Þ

The algebraic system of ðN þ 1Þ equations includes ðN � 2Þ conditions that are the vanishing of the
residual of the integro-differential equation at the ðN � 2Þ interior points

Rj � ðuj � cÞuj;XX þ ðuj;X Þ2 �
p2

4

XN�1

j¼0

Kijuj ¼ 0: ð28Þ

The boundary condition uð0Þ ¼ c is u0 ¼ c in discrete form. The boundary condition uX ðX ¼ pÞ ¼ 0 is

uX ðzN�1Þ ¼
PN�1

j¼0 dð1Þ
N�1;juj ¼ 0. The third boundary condition is

PN�1

j¼0 K0;juj ¼ ½uX ðz0Þ
2. The set of N þ 1

algebraic equations – ðN � 2Þ conditions from the differential equation plus the three boundary conditions

– is then solved for the N þ 1 unknowns comprising the N grid point values uj plus the phase speed c.
The standard algorithm for sets of nonlinear algebraic equations is the Newton–Raphson iteration

described in all elementary numerical analysis texts such as Appendix C of [7]. Like all iterations,
Newton�s algorithm requires an initialization or ‘‘first guess’’, and the iteration may fail if the first guess

is too far from the desired root. A popular strategy for generating first guesses for a certain dispersion

operator D is to inflate the problem by introducing an artificial parameter k, and replacing the dis-

persion operator by
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D ! kDþ ð1� kÞD0; k 2 ½0; 1
; ð29Þ

where D0 is one of the dispersion operators for which an explicit solution is known. For k ¼ 0, the

explicit solution for the ‘‘base’’ operator D0 is the exact solution. The solution for k ¼ 0 furnishes the

first guess for k ¼ l for some l � 1. The solution for k ¼ l is a good first guess for k ¼ 2l, and so on.
By preceding in sufficiently small steps in k, one can bootstrap from k ¼ 0 to k ¼ 1, each root furnishing

a good initialization for the next value of k, until the target dispersion operator is applied when k ¼ 1. A

table of such solutions has been given above; the simplest choice is Ostrovsky–Hunter equation, which is

D0 � u.
Numerical solutions need not have zero mean, i.e.,

R p
0
uðX Þ dX ¼ 0, because of the freedom, when the

mean of the kernel of the convolution is zero, to add a constant l to both c and u simultaneously. We can

enforce the zero mean condition by the optional post-processing step

~uumean ¼
XN�1

j¼0

ujwj; u ¼ ~uu� ~uumean; c ¼ ~cc� ~uumean; ð30Þ

where ~uu and ~cc are the grid point values and phase speed of the solution before the post-processing step, and

u and c are the corresponding values for the zero mean solution, and the wj are the Legendre–Lobatto

quadrature weights.

Our numerical treatment of the convolution integral implicitly assumes that the kernel KðX Þ is an

analytic function. However, the wave equation is still well-posed even if K has delta-function sin-

gularities or discontinuous slopes. We are unapologetic about presenting an algorithm only for

smooth K. The kernel must contain delta-functions for the Korteweg-deVries and Fifth-Order Kor-

teweg-deVries equations, but these do not have corner waves, and their travelling wave solutions can
be found by attacking the differential equation, rather than the integro-differential form. Whitham

[30,31] has discussed kernels which have slope discontinuities at X ¼ 0. We explain in a later section

that these usually arise when the kernel is a Green�s function, and Whitham devised a simple pro-

cedure for converting such integro-differential equations back into ordinary differential equations.

Thus, there has been little interest in solving Whitham�s Equation Family in integro-differential

equation form for non-smooth kernels.

If KðX � yÞ had a slope discontinuity at X ¼ y, one could recover spectral accuracy by writing the in-

tegral as the sum of two separate integrals, one on y 2 ½0;X 
 and the other on y 2 ½X ; 2p
, with smooth
kernels on new integration intervals. Implementing Gaussian quadrature is straightforward but messy, so

the details are not given here.
4. Numerical example

Fig. 3 shows how the Gabov–Shefter–Rosales problem, which is the dispersion operator with the kernel

KðxÞ ¼ pcosðxÞ, can be solved by continuation from the known solution for Ostrovsky–Hunter equation.
Fig. 4 shows that the numerical difficulties created by the slope discontinuity at X ¼ 0 have been

completely eliminated: the error falls roughly linearly on a log-linear plot of error versus the number of

grid points N . Because the exact solution, restricted to the interval X 2 ½0; p
, is a constant plus a term

proportional to sinðX=2Þ ¼ sinððp=4Þðzþ 1ÞÞ, a so-called entire function with no singularities except at

infinity in the complex z-plane, the convergence is extremely fast. The maximum pointwise error in uðX Þ is
almost identical with the error in the phase speed; with just 15 grid points, both errors are only about

4:3� 10�12!



Fig. 4. Maximum pointwise error (L1 error) is shown as the circles and the error in c is shown as the �s, both plotted versus N , which
is simultaneously the number of collocation points and also the number of Legendre polynomials in the truncated spectral basis. The

maximum error in u is graphically indistinguishable from the corresponding error in c, although there are slight numerical differences

between them, so the circles and �s are are almost superimposed.

Fig. 3. Continuation from the corner wave of Ostrovsky–Hunter equation (thick solid curve) to the corner wave of the Gabov–

Shefter–Rosales equation (thick dashed curve); several intermediates are also shown.
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5. Known explicit solutions

Explicit solutions are valuable as starting points for the continuation method described in the next

section and as test problems. Since these explicit solutions have been published only in scattered places, it is
useful to collect known explicit solutions as Table 1.
6. Greens function kernels

Whitham [30,31] and Naumkin and Shishmarev [20] in their monograph chose to write the wave

equation for travelling waves as, with vðX Þ � uðX Þ � c as before,



Table 1

Explicit corner waves for special cases of Whitham�s equation family

Equation name Dispersion operator Du Corner wave u, c Sources

Ostrovsky–Hunter u p2

9
� p

3
jxj þ 1

6
x2; c ¼ p2=9

[16,17]

Gabov/Shefter–Rosales
Z 2p

0

cosðx� yÞuðyÞ dy
32

3p
� 16

3
sinðjX j=2Þ; c ¼ 32=ð3pÞ [15,26]

Whitham
pb2 u

�
�
Z 2p

0

b coshðbfjX � yj � pgÞ
2 sinhðpbÞ uðyÞ dy

�
� 4

3
p 1

�
� coshð½b=2
ðX � pÞÞ

coshð½b=2
pÞ

�
þ c;

c ¼ 4

3
p 1

�
� 2

pb
tanh

pb
2

� ��
[25,30–32]
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vvX ¼ �p
Z 2p

0

GðX � yÞvyðyÞ dy; ð31Þ

where p is a constant. By an integration-by-parts, one can show that Whitham�s form is equivalent to the
convolution integral form used here (5) if the kernel KðX Þ ¼ �ppGXX .

Whitham observed that if G is the Green�s function for a linear, constant coefficient differential operator

L, i.e.,

LG ¼ dðxÞ; ð32Þ

where d is the usual Dirac delta-function, then the integro-differential equation can be converted into a more

easily soluble differential equation. If the differential operator associated with G is applied to both sides of

the integro-differential equation, the wave equation becomes

LfvvXg ¼ �p
Z 2p

0

LfGðX � yÞgvyðyÞ dy ¼ �pvX ð33Þ

because the integration of the product of a function with the delta-function is just the value of the factor of

d, evaluated at X ¼ y. The Legendre-pseudospectral algorithm can be applied to the differential equation

just as to the integro-differential equation.

Since the corner waves for Whitham�s own particular choice of a Green�s function are explicitly known

and also because there are no particular numerical novelties in solving a problem that is purely a differential
equation, we have not worked out a numerical example.
7. Summary and open questions

As noted earlier, a motive in deriving an algorithm to compute corner waves is that these arise in a wide

variety of wave systems, not merely Whitham�s family of equations. Equatorially trapped Kelvin waves

were described in Section 1. The Camassa–Holm equation also has solitary waves with slope disconti-

nuities (‘‘peakons’’) and spatially periodic waves known as ‘‘coshoidal waves’’ [5,10,11]. Similar structures

known as ‘‘compactons’’ are described in [14,24]. Since compactons and peakons are also known in ex-

plicit form, there is no need for numerical methods to compute them. However, when these wave equations

are generalized, explicit solutions are no longer possible, and the Legendre-pseudospectral method is
useful.
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On the theoretical side, Naumkin and Shishmarev have made considerable progress in proving existence

theorems and breaking-sufficiency theorems in a series of papers summarized in their book [20]. However, a

sample of theorems-desired-but-not-yet-proved includes

1. a proof of the existence of corner waves for a broad class of dispersion operator;

2. a proof that corner waves are symmetric;

3. a proof that corner waves are attractors for all time-dependent solutions of sufficiently large initial

energy.

In his 1967 paper, Whitham also discussed a dispersion operator in the form (for the infinite interval)

D ¼ �
Z 1

�1
KgðX � yÞuy dy; ð34Þ

where the kernel is the Fourier transform of the dispersion relation for linear water waves:

Kg ¼ � 1

2p

Z 1

�1
expðikX Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
k
tanhðkHÞ

r
dk: ð35Þ

Although the transform cannot be done analytically so as to give Kg in explicit form, it is known that the

kernel is singular at X ¼ 0 as 1=
ffiffiffiffi
X

p
. The algorithm described here, which implicitly assumes that uðX Þ and

KðX Þ are well-behaved functions, will not be exponentially convergent for such a kernel. Furthermore, the

solution itself becomes ‘‘cusped with a vertical tangent’’ [30, p. 23]. There are various techniques for coping

with such singularities in pseudospectral algorithms [7], but we have not attempted such an extension here:

a wave of infinite slope at the crest is not of great physical or engineering interest.

For non-singular dispersion operators and corner waves of finite slope, the principle numerical challenge

is to extend the computational algorithm to more than one space dimension and to more complicated
differential equations, as exemplified by the equatorially trapped Kelvin waves described in the introduc-

tion. This in turn is tied to knotty theoretical questions: Does the limiting Kelvin wave truly have a slope

discontinuity, or is this an illusion created by the difficulty of accurate numerical solutions when the cur-

vature is very high at the crest? If the slope discontinuity is real, does it extend to all latitudes, or does the

Kelvin wave become smooth at sufficiently high latitudes where the wave has decayed to small amplitude?

Although the Legendre-pseudospectral algorithm converges exponentially fast for Whitham�s equation
family with smooth dispersion operators and is easy to program, we have taken only a few toddler steps

towards the goal of understanding corner waves and wave equations with finite amplitude breaking.
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